Exercise 9.2
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
(a)
(1+X_1)^2+(2-X_2)^2=4 is the equation of a circle. The circle equation is in the format (x – h)^2 + (y – k)^2 = r^2, where h and k are the center of the circle and r is the radius.
# Draw circle
circle =plt.Circle((-1,2), 2, color='r', fill=False)
fig, ax = plt.subplots()
ax.axis("equal") # To avoid oval circles. Check the References.
ax.add_artist(circle)
ax.set_xlim((-10,10))
ax.set_ylim((-10,10))
(-10, 10)
(b)
# Draw circle
circle_background =plt.Circle((-1,2), 20, color='b') # Way to fool matplotlib and have a colored background.
circle =plt.Circle((-1,2), 2, color='r')
fig, ax = plt.subplots()
ax.axis("equal") # To avoid oval circles. Check the References.
ax.add_artist(circle_background)
ax.add_artist(circle)
ax.set_xlim((-10,10))
ax.set_ylim((-10,10))
plt.show()
- (1+X_1)^2+(2-X_2)^2>4 - Blue region.
- (1+X_1)^2+(2-X_2)^2 \leq 4 - Red region.
(c)
# Draw circle
circle_background =plt.Circle((-1,2), 20, color='b') # Way to fool matplotlib and have a colored background.
circle =plt.Circle((-1,2), 2, color='r')
fig, ax = plt.subplots()
fig.set_size_inches(10, 9)
ax.axis("equal") # To avoid oval circles. Check the References.
ax.add_artist(circle_background)
ax.add_artist(circle)
ax.set_xlim((-10,10))
ax.set_ylim((-1,10))
plt.annotate('X (0,0)', xy=(0,0), xytext=(0,0))
plt.annotate('X (-1,1)', xy=(-1,1), xytext=(-1,1))
plt.annotate('X (2,2)', xy=(2,2), xytext=(2,2))
plt.annotate('X (3,8)', xy=(3,8), xytext=(3,8))
plt.show()
- Blue region - (0,0); (2,2); (3,8).
- Red region - (-1,1).
References
- http://stackoverflow.com/questions/9215658/plot-a-circle-with-pyplot (how to draw a circle)
- http://stackoverflow.com/questions/9230389/why-is-matplotlib-plotting-my-circles-as-ovals/9232513#9232513 (solving matplot oval circles)