Exercise 6.10
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split # To split dataset (train + test datasets)
from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS # mlxtend package: exhaustive search for feature selection
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
(a)
np.random.seed(0)
# Dataframe with random numbers and the specified dimensions
n = 1000
p = 20
X = pd.DataFrame(np.random.normal(size=(n, p)))
# Epsilon
epsilon = np.random.normal(size=n)
# Coefficient b1
b1 = np.random.normal(size=p)
# Random number of b1 elements with value zero
for i in range(0, np.random.randint(0,p)):
b1[np.random.randint(0,p)] = 0
# Final expression
# y must be a vector with 1000 rows.
y = np.dot(X, b1) + epsilon
(b)
# Split dataset (train + test datasets)
# We can't change the variables order. Otherwise, we save the datasets with wrong names.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .9)
# Confirm the size of test dataset
len(X_test)
900
# JR: https://github.com/scipy/scipy/issues/5998
import warnings
warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd")
# To solve the problem we will use exhaustive feature selection.
# This is a brute force solution but ensures the best subset selection.
# mlxtend package is used (link on References; pay attention to Example 2).
lr = LinearRegression()
score = []
for i in range(1,p):
print(i)
efs = EFS(lr,
min_features = i,
max_features = i,
scoring = 'neg_mean_squared_error',
print_progress = False,
cv = 10)
# .fit input should be array-like.
# X_train is a dataframe so we use as_matrix() to convert it.
efs.fit(X_train.as_matrix(), y_train)
score.append(efs.best_score_)
#print(efs.best_score_)
#print(efs.best_idx_)
1
2
3
4
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-5-6ae6ca4077cb> in <module>()
20 # .fit input should be array-like.
21 # X_train is a dataframe so we use as_matrix() to convert it.
---> 22 efs.fit(X_train.as_matrix(), y_train)
23 score.append(efs.best_score_)
24
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/mlxtend/feature_selection/exhaustive_feature_selector.py in fit(self, X, y)
149 all_comb = len(candidates)
150 for iteration, c in enumerate(candidates):
--> 151 cv_scores = self._calc_score(X=X, y=y, indices=c)
152
153 self.subsets_[iteration] = {'feature_idx': c,
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/mlxtend/feature_selection/exhaustive_feature_selector.py in _calc_score(self, X, y, indices)
181 scoring=self.scorer,
182 n_jobs=self.n_jobs,
--> 183 pre_dispatch=self.pre_dispatch)
184 else:
185 self.est_.fit(X[:, indices], y)
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/model_selection/_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch)
138 train, test, verbose, None,
139 fit_params)
--> 140 for train, test in cv_iter)
141 return np.array(scores)[:, 0]
142
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
756 # was dispatched. In particular this covers the edge
757 # case of Parallel used with an exhausted iterator.
--> 758 while self.dispatch_one_batch(iterator):
759 self._iterating = True
760 else:
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
606 return False
607 else:
--> 608 self._dispatch(tasks)
609 return True
610
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
569 dispatch_timestamp = time.time()
570 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 571 job = self._backend.apply_async(batch, callback=cb)
572 self._jobs.append(job)
573
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
107 def apply_async(self, func, callback=None):
108 """Schedule a func to be run"""
--> 109 result = ImmediateResult(func)
110 if callback:
111 callback(result)
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
324 # Don't delay the application, to avoid keeping the input
325 # arguments in memory
--> 326 self.results = batch()
327
328 def get(self):
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score)
236 estimator.fit(X_train, **fit_params)
237 else:
--> 238 estimator.fit(X_train, y_train, **fit_params)
239
240 except Exception as e:
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/linear_model/base.py in fit(self, X, y, sample_weight)
510 n_jobs_ = self.n_jobs
511 X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
--> 512 y_numeric=True, multi_output=True)
513
514 if sample_weight is not None and np.atleast_1d(sample_weight).ndim > 1:
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/utils/validation.py in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
519 X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite,
520 ensure_2d, allow_nd, ensure_min_samples,
--> 521 ensure_min_features, warn_on_dtype, estimator)
522 if multi_output:
523 y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False,
/Users/disciplina/anaconda/envs/islp/lib/python3.5/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
380 force_all_finite)
381 else:
--> 382 array = np.array(array, dtype=dtype, order=order, copy=copy)
383
384 if ensure_2d:
KeyboardInterrupt:
score
(d)
(e)
(f)
(g)
References
- http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html (split dataset)
- http://rasbt.github.io/mlxtend/user_guide/feature_selection/ExhaustiveFeatureSelector/#api (mlxtend feature selector)